Note: An improved low-frequency correction technique for piezoelectric force sensors in high-speed nanopositioning systems.
نویسندگان
چکیده
Piezoelectric force and position sensors provide high sensitivity but are limited at low frequencies due to their high-pass response which complicates the direct application of integral control. To overcome this issue, an additional sensor or low-frequency correction method is typically employed. However, these approaches introduce an additional first-order response that must be higher than the high-pass response of the piezo and interface electronics. This article describes a simplified method for low-frequency correction that uses the piezoelectric sensor as an electrical component in a filter circuit. The resulting response is first-order, rather than second-order, with a cut-off frequency equal to that of a buffer circuit with the same input resistance. The proposed method is demonstrated to allow simultaneous damping and tracking control of a high-speed vertical nanopositioning stage.
منابع مشابه
Preloading Piezoelectric Stack Actuators in High-Speed Nanopositioning Systems
Recent development in high-speed nanotechnology applications, such as scanning probe microscopy and nanofabrication, has increased interest on the advancement of high-bandwidth flexure-guided nanopositioning systems. These systems are capable of providing motions with sub-nanometer resolution over a positioning bandwidth of a few kilohertz or more. High-speed nanopositioning devices are commonl...
متن کاملVibration and Tracking Control of a Flexure-Guided Nanopositioner Using a Piezoelectric Strain Sensor
This paper presents a novel sensing technique which uses a piezoelectric strain sensor for damping and accurate tracking of a nanopositioning stage. Piezoelectric elements have been used effectively as sensors for vibration control of smart structures. However, complications arise when one uses a piezoelectric strain sensor in a feedback loop for tracking. This is due to the high-pass character...
متن کاملInvited review article: high-speed flexure-guided nanopositioning: mechanical design and control issues.
Recent interest in high-speed scanning probe microscopy for high-throughput applications including video-rate atomic force microscopy and probe-based nanofabrication has sparked attention on the development of high-bandwidth flexure-guided nanopositioning systems (nanopositioners). Such nanopositioners are designed to move samples with sub-nanometer resolution with positioning bandwidth in the ...
متن کاملMEMS-Based Nanopositioning for On-Chip Atomic Force Microscopy
An important component of an atomic force microscope is a nanopositioner that moves the sample, relative to the probe, in a raster pattern. A typical AFM nanopositioner is a large, heavy flexure-guided mechanism machined from a solid block of steel or aluminum, with incorporated actuators and displacement sensors. The most widely used actuation technology for nanopositioning is the piezoelectri...
متن کاملNonlinear Optimal Tracking Control of a Piezoelectric Nanopositioning Stage
High performance nanopositioning stages, used in a variety of applications such as atomic force microscopy and three-dimensional nanometer-scale lithography, require stringent position control over relatively large displacements and a broad frequency range. Piezoelectric materials, which are typically employed in nanopositioining stages, provide excellent position control when driven at relativ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- The Review of scientific instruments
دوره 88 4 شماره
صفحات -
تاریخ انتشار 2017